
When you stack traditional development, low-code, and no-code against each other, it’s clear
which development method is best-suited for the modern enterprise. No-code with Unqork
goes beyond other platforms to allow you to build truly complex, scalable, enterprise-grade
applications. Unqork can help your enterprise unlock all of the benefits of rapid app
development for a fraction of the cost, without sacrificing security or complexity.

Schedule a demonstration today to see what no-code can do for your business.

Code vs. Low-Code vs. No-Code

For enterprises looking to remain
competitive in today’s market, offering
powerful digital applications is
essential. According to Forbes,
digitally mature companies are making
$1 for every 38 cents made by their
more “analog” competitors.

Unfortunately, the path to a complex application is riddled with failure and exorbitant costs.
Only 28% of major corporations achieve effective digital transformations, meaning that the
overwhelming majority of large-scale IT projects result in failure. Choosing the right
development method for your next project can alleviate friction points and play a large role in
the success of your software—but how do you choose the right one? Start by comparing
traditional development, low-code, and no-code across these five areas.

Identifying the right development method for your next project
is a big decision — this table will help you make it.

All processes must be
coded using specific,
complicated, and
soon-to-be outdated
programming languages.

Everything from basic
functions to complex
operations can be
configured with visual
flows and pre-built
components — no coding
required.

Only skilled developers
can make changes, and
finding people with
experience in certain
programming languages
gets harder as time
goes on.

It’s easy to make changes
because all configuration
takes place within logical
flows on a pre-tested
platform—to change the
application, just arrange
components as needed.

Basic functions can be
configured using a visual
editor or pre-built modules,
but complex operations
and modifications still
require code.

Like traditional
development, trained
engineers are still
required to decipher and
debug lines of code to
make and deploy changes.

Te
ch

no
lo

gy

Integrations with code can
be incredibly complicated,
and engineers have to
constantly check for
compatibility with legacy
systems.

You can seamlessly
integrate your application
with legacy technologies
or modern external
solutions without
scripting.

It’s extremely difficult to
manage integrations with
code. If your legacy code
can’t accommodate
integrations, you’ll end up
with applications that only
work in a vacuum.

Integrations couldn’t be
easier. You can hook into
any legacy file format and
extract data in a visual
interface. You can also
easily configure APIs
using plug-in components.

Modern integrations can
be done using visual
configuration, but legacy
systems or complex data
transformations still
require code.

Integrations are a little
faster and easier than
with code, but you’ll still
have to code your most
complex (and critical!)
integrations.

In
te

gr
at

io
n

Between hiring engineers,
purchasing disparate
tools, and accounting for
legacy maintenance, an
application will continue to
accumulate significant
costs over time.

Complex projects can be
done in a fraction of the
time for a fraction of the
cost. Not only do you
reduce development and
legacy maintenance costs,
but your speed-to-market
also allows you to see
returns much faster.

Code already comes at a
high price point—and 45%
of large-scale IT projects
run over budget. Before you
know it, your enterprise
could be saddled with a lot
of technical debt.

With no editable
codebase to maintain,
lower overhead, and an
application that actually
meets business needs the
first time around, your
enterprise can save
money and focus on
generating value.

Compared to traditional
development, low-code is
a more affordable
approach because less
code means fewer costs
associated with
maintaining code.

Applications can be built
faster, but you still have to
pay for the basic elements
of code maintenance and
support down the line.
That adds up.

C
os

t

A not-insignificant portion
of your development
resources must focus on
ensuring your application
adheres to critical
cybersecurity standards.

No-code platforms like
Unqork have enterprise
security built-in from the
ground up. Data
encryption, role-based
permissions, single-tenant
deployment in a private
cloud, and more will keep
your application secure.

Cybersecurity is a
never-ending battle. If
your engineers have to
constantly edit the
codebase to keep up with
security standards, there
won’t be time left for
anything else, and
important updates can
easily slip through the
cracks.

A no-code platform’s
native security features
ensure that you’re building
an application your
customers can trust.
Security is constantly
updated on the back-end
of the platform so you
never need to worry about
it. Also, remaining
compliant with evolving
regulations is a breeze.

Security upgrades and
patches are uploaded
automatically, but many
low-code platforms don’t
have the security protocols
necessary to handle
enterprise-grade use
cases.

Managing cybersecurity is
easier with low-code, but
low-code security
measures still might not be
strong enough to suit your
needs—meaning you’ll
have to use additional
code to take your own
precautions.

Se
cu

rit
y

On average, building an
enterprise solution with
code can take 9-to-12
months.

With no-code, your app
could be ready to launch
in a matter of weeks—or
even days.

A complex low-code
application can easily take
3-to-6 months to
complete.

Sp
ee

d

Traditional Code Low-Code No-Code

Digitally-mature Analog

