
Legacy Code Is the Problem,

No-Code Is the Solution

Find out why today’s most innovative enterprises are sidestepping

code altogether with Unqork.

Legacy Code Is the Problem, No-Code Is the Solution

Contents
Introduction

The Consequences of Legacy Code

Inflexibility

Technical Debt

Maintenance Costs

Risk

The No-Code Solution

Unqork: The World’s First Enterprise No-Code Application Platform

Appendix: A Brief History of Enterprise Development

3

4

5

7

8

9

12

14

3 Legacy Code Is the Problem, No-Code Is the Solution

“Legacy code” is a bit of a catch-all phrase developers
use to casually refer to any existing code they find
themselves working on. While the term is somewhat
ambiguous, the impact is all too real. Maintaining
years—or even decades—of legacy code demands
an outsized amount of developers’ time, increases
overhead costs, and inhibits an organization’s ability to
efficiently address challenges.

Case in point: Consider last year’s unexpected rush
on COBOL programmers. Many government and
financial systems still run on COBOL1, even though
most universities no longer include this half-century-
old language in their CS curriculum. This turned out
to be a huge problem for several legacy systems,
which needed to be updated in response to the COVID
pandemic. In order to take advantage of the CARES
Act passed by Congress, state unemployment systems
needed to be quickly updated to accommodate new
rules and a massive influx of recipients. The state of
New Jersey, however, found itself stymied through
their reliance on a comparatively ancient codebase,
which led the governor to publicly plead for COBOL-
literate volunteers to update its infrastructure.

The COBOL rush may have been a highly visible
case study in the problems of legacy code, but
even code based on contemporary languages can
cause headaches and heartburn for developers and
businesses alike.

As technologies, business processes, and workforces
evolve over time, so must the code that supports them.
The more complex and sprawling your digital footprint,
the more challenging this becomes. Today’ enterprise
environments evolve so quickly that as soon as any
code is sent to production, it’s already legacy. The
only way to avoid the challenges of code is to remove
it altogether. In this eBook, we will explore how a new
class of no-code development platforms such as
Unqork can eliminate the challenges of legacy code.

1 It’s predicted that 70-to-80% of all business transactions worldwide are still based on systems written in COBOL.

https://blog.tidelift.com/developers-spend-30-of-their-time-on-code-maintenance-our-latest-survey-results-part-3
https://www.krugle.com/resources/downloads/Krugle_WP_Hidden_Costs_of_Code_Maintenance.pdf
https://www.krugle.com/resources/downloads/Krugle_WP_Hidden_Costs_of_Code_Maintenance.pdf
https://arstechnica.com/tech-policy/2020/04/ibm-scrambles-to-find-or-train-more-cobol-programmers-to-help-states/
https://www.eweek.com/development/from-the-dustbin-cobol-rises
https://mashable.com/article/coronavirus-unemployment-cobol-programmers/
https://medium.com/better-programming/all-code-is-legacy-code-4d3df80d0979#
https://www.eweek.com/development/from-the-dustbin-cobol-rises

The increase in
hours to build
enterprise
software over
the past decade

4Legacy Code Is the Problem, No-Code Is the Solution

Inflexibility

The Consequences of
Legacy Code

Today’s architectures are expansive,
disparate, and built on decades of
deeply-ingrained legacy systems. Most
pull data from or push data to external
systems, storing data in one system,
analyzing it in another, and using another
to display it.

Integrating and meshing these systems
together with convulited workflows
makes it difficult and expensive to
maintain and make updates/changes
down the line. Attempting to build and
manage within these complex digital
systems using code directly contributes
to reduced IT productivity. Despite all the
iterative-improvement coding tools and
organizational approaches, development
productivity is getting worse, not better.
With one study finding a 20% loss in
developer productivity over the past
decade. (For more, see “A Brief History
of Enterprise Development” on page 14).

Modern-day developers are responsible for scaling
functionality across multiple departments, devices,
systems, and locations—which means maintaining
hundreds of thousands of lines of code built over
years, if not decades. Here are just a few of the
challenges that enterprises face from an expansive
legacy codebase:

20%

https://www.qsm.com/qsm/content-access?node=1383&title=Long%20Term%20Trends%20from%2040%20Years%20of%20Completed%20Software%20Project%20Data

Technical Debt
With limited resources to address
every problem in an expansive
codebase due to changing
technological or business
environments, IT teams often must
settle for kicking problems down
the line with small workarounds. This
is known as technical debt. And like
all debts, the “bill” will eventually
come due.

A very public example of that bill
coming due can be found in the
recurring effects of the millennium
Y2K bug, which is still causing
problems two decades later due to
short-sighted fixes. Back in 1999,
many developers “windowed” the
dates in the codebase to fix 80% of
various systems. This fix treated all
dates from 00 to 19 as being 2000
to 2019, while anything beyond the
“pivot date” would be considered
a previous century. This fix was
intended to be a short-term fix, which
would surely be replaced before
2020. However, in many cases, the
fix never came.

On January 1, 2020, many of the
“fixed” systems rolled back to the
early 20th century and read the “20”

in dates as 1920. Utility companies
reportedly produced bills with this
incorrect date, and thousands of
New York City parking meters
rejected credit card transactions
because of it. The video game
WWE 2K20 also reportedly stopped
working that day too, until the
developer patched it a few days later.
It led to a lot of funny news stories,
but for the affected companies,
it caused more headaches than
laughs—not to mention the costs
incurred. One 2018 report estimated
that the cost of technical debt that
year in the US alone was around a
half trillion dollars.

The more code you maintain, the
more potential you have to fall into
technical debt. One analysis by the
CAST Research Labs (CRL) analyzed
found that the average-sized
application of 300,000 lines of code
has over $1 million worth of technical
debt. That represents an average
debt of $3.61 per line. This can be a
huge amount of money over time and
place companies at a disadvantage.

5Legacy Code Is the Problem, No-Code Is the Solution

https://www.hpcwire.com/1999/03/19/common-y2k-quick-fix-last-decades/
https://www.hpcwire.com/1999/03/19/common-y2k-quick-fix-last-decades/
https://www.newscientist.com/article/2229238-a-lazy-fix-20-years-ago-means-the-y2k-bug-is-taking-down-computers-now/
https://www.zdnet.com/article/the-y2k-bug-is-back-causing-headaches-for-developers-again/
https://www.zdnet.com/article/the-y2k-bug-is-back-causing-headaches-for-developers-again/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.castsoftware.com/research-labs/technical-debt-estimation

Assumed New
Projects Per Year

Average LOCs Per
Enterprise Application

Total New LOCs
Created Per Year

Average Cost of
Technical Debt Per LOC

Cost of New Technical
Debt Each Year

6Legacy Code Is the Problem, No-Code Is the Solution

No-Code Vs. Technical Debt

Consider the plights of Enterprises A and B.
They’re similar-sized companies with similar goals
and are in similar markets. Enterprise A decides
to take a traditional code-based approach, while
Enterprise B embraces no-code.

Using this framework referenced in this section,
we can calculate how much additional technical
debt Enterprise A incurs over time by relying on
code. Meanwhile, over the course of 5 years,
Enterprise B avoids more than $5.4 million in
costs to address technical debt. This also means
that profits and revenues grow because they can
innovate and release new products to stay ahead
of the competition.

5

300,000

1,500,000

$3.61

$5,415,000

Enterprise A
Code-Based Approach

Enterprise B
No-Code

5

N/A

N/A

N/A

$0

Legacy Code Is the Problem, No-Code Is the Solution

Maintenance Costs
As an organization’s digital
infrastructure—and its codebase—
expands over the years, IT teams are
tasked with untangling the web every
time a change needs to be made.

Developers will tell you that legacy
code takes up a large chunk of their
time. One survey found that developers
spend 30% of their time maintaining
code or an average of 12 hours every
week. A Stripe survey found that they
spent an average of 17.3 hours every
week on code maintenance.

Other studies have shown that
developers spend 50% of their time
learning the code they have to work
with and their employers spend 60% of
the development budget maintaining it.
No matter how you look at it, that’s
a huge portion of your IT resources
just fixing bugs and dealing with
technical debt.

The more time you spend researching
old ways of doing things or reaching out
to retired developers for fixes to code
you’re stuck maintaining or fixing.

Add in the new lines of code you add
every year, it can add up to several
million dollars annually. In the U.S.,
companies spent $70 billion in 2003
on maintenance and nearly $600 billion
in 2018. That’s a 7x increase over just
15 years.

30%

Percentage of
development
budgets dedicated
to maintenance

60%

Increase in
maintenance costs
between 2003
and 2018

7x

Percentage of time
developers spend
maintaining code

7

https://blog.tidelift.com/developers-spend-30-of-their-time-on-code-maintenance-our-latest-survey-results-part-3
https://blog.tidelift.com/developers-spend-30-of-their-time-on-code-maintenance-our-latest-survey-results-part-3
https://stripe.com/reports/developer-coefficient-2018
https://www.krugle.com/resources/downloads/Krugle_WP_Hidden_Costs_of_Code_Maintenance.pdf
https://www.krugle.com/resources/downloads/Krugle_WP_Hidden_Costs_of_Code_Maintenance.pdf
https://www.krugle.com/resources/downloads/Krugle_WP_Hidden_Costs_of_Code_Maintenance.pdf
https://blog.overops.com/report-technical-debt-is-costing-you-more-than-you-think/
https://blog.overops.com/report-technical-debt-is-costing-you-more-than-you-think/

The average
number of errors
for every 1,000 LOCs
sent to production

8Legacy Code Is the Problem, No-Code Is the Solution

Like those COBOL-based applications
or systems that are a honeycomb of
applications and networks that are
bolted on to each other (like airline
management systems). Systems are
so interconnected that one small
problem can have a cascading effect.

Consider what happened in 2019
when a single piece of safety software
grounded flights from at least
five airlines, causing planes to be
grounded nationally. And the previous
week, another software application
went down, crippling ticketing and
boarding operations for another
three airlines.

A sprawling infrastructure is inherently
unwieldy, so when you add hotfixes
to it that cause new issues, your

problems suddenly become very
visible to end-users and consumers.
You’re assured financial damage
(according to Gartner, network
downtime costs enterprises, on
average, $5,600 per minute) as well
as reputational damage, which is less
quantifiable, but can impact your
business for years to come. Factor in
the 100-to-150 errors most developers
average for every 1,000 lines of code
(according to Watts Humphrey’s book,
A Discipline for Software Engineering)
and you can see how your codebase is
a potential timebomb.

Risk

100-to-150
The average per-
minute cost of
network downtime
for a large enterprise

$5,600

https://www.unqork.com/resources/articles/why-relying-on-legacy-code-like-cobol-is-a-disaster-waiting-to-happen
https://abcnews.go.com/Politics/multiple-airlines-experience-computer-problems-groundings/story?id=62086805
https://abcnews.go.com/Politics/multiple-airlines-experience-computer-problems-groundings/story?id=62086805
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

9Legacy Code Is the Problem, No-Code Is the Solution

A Better Way

How can anyone ensure that their code doesn’t become too
much of a burden to the future? Is there a way to avoid all the
refactoring and technical debt to focus on newer technologies
that help deliver the right experiences to customers and
deliver on the promise of business objectives?

We think there is, and it’s called no-code.

The No-Code SolutionThe No-Code Solution

10Legacy Code Is the Problem, No-Code Is the Solution

No-code allows companies to build robust custom solutions
without writing a single line of code. No-code platforms like
Unqork provide a layer of abstraction between developers and
the codebase, which means developers focus their attention
on configuring application logic rather than dealing with their
application’s code or syntax.

To be clear, no-code systems do generate code, but users never
have to invest any thought or resources into writing or
maintaining that code—and that can make a huge difference.
Here are a few highly impactful benefit that come from choosing a
code-free paradigm:

Stop Producing New Code: The most obvious benefit
of an enterprise no-code platform like Unqork is that it
eliminates the creation of new code that you will have to
deal with, which means your team can focus its resources
on building value-adding solutions, or maintaining/
sunsetting existing legacy code without adding code that
will eventually have to be worked on.

All Technical Updates Are “Outsourced”: With no-code,
the platform takes care of everything “under the hood”
and eliminates the need for you to keep systems up-to-
date because the no-code platform provider takes care of
everything on the backend. You design the business logic,
and the platform handles all the shifting technologies.

Eliminate Human Coding Errors: No-code eliminates
the chances of developer typos when working on the
codebase because it removes the need to write any
code—and in many cases provides guardrails which
proactively avoids errors before they happen.

v

11Legacy Code Is the Problem, No-Code Is the Solution

Users create functionality through the visual interface,
and the platform handles the coding. The Unqork
platform, for example, lets you build your app with
configurable components and provides “guardrails’’ to
proactively guide users away from errors.

Accelerated Development: Building business solutions
via a visual configuration-based platform is inherently
faster than writing them out in code. This acceleration
empowers businesses to hasten time-to-market and
time-to-value for new solutions, as well as for any
updates down the line. The average enterprise application
can take up to a year to go from ideation to production
using a traditional code-based approach; with no-code
sophisticated applications can be created in a matter of
weeks, or even days.

Flexible Workforce: A study by Forrester found that while
74% of enterprises have a digital strategy in place, only
15% seem to have the right skills to deliver it. No-code
can help mitigate the global IT skills shortage. While
modern programming languages can take a year to learn,
and several more to master, platforms like Unqork can be
picked up in a matter of weeks.
Since the platform handles so much of the “heavy lifting,”
companies can use less-experienced developers (or
“Creators” as we refer to them at Unqork) to handle
routine tasks, while more-senior developers can
concentrate on applying their experience in more value-
additive ways.

At Unqork, we believe the future of software development is
based on your business and the people in it, not the code you
create or maintain. We believe in using legacy code for good and
preventing you from creating more in the future. Want to learn
about how to transition your business from legacy code to no-
code? Get in touch to see how easy it can be.

https://go.unqork.com/demo.html

12Legacy Code Is the Problem, No-Code Is the Solution

Unqork is the first enterprise no-code development platform specifically engineered for
the world’s most complex and regulated financial service environments. Our platform
empowers companies to rapidly build and deploy sophisticated applications without
writing a single line of code.
We are backed by some of the most disciplined investors in the world, including Goldman
Sachs, Capital G, and BlackRock. In just three years, our technologies have been adopted
by dozens of leading organizations (including Liberty Mutual, John Hancock, State Street,
and the city of New York just to name a notable few).
Unqork is a cloud-agnostic SaaS platform, so customers can avoid cloud vendor lock-in
and deploy applications with the provider of their choice. All customers operate in single-
tenant environments, so there is never a mixing of data between Unqork clients.
Our clients can achieve unparalleled speed and flexibility in their development function
while requiring a fraction of the resources. We can deliver these benefits through:

A unified SaaS platform: Unqork is a completely unified SaaS platform, which
means it provides all the components and capabilities related to crucial areas like
compliance (up-to-date regulatory and enterprise rules engines for FATCA, CRS,
UK CDOT, Dodd-Frank, EMIR, and MiFID II, etc.), security (native encryption both
in transit and rest, custom RBAC capabilities, and crowd-sourced penetration
tests), and application management (SDLC governance, application versioning,
and module management)2.

A visual UI: Applications are built via an intuitive, visual User Interface (UI)
featuring drag-and-drop components representing user-facing elements,
backend processes, data transformations, third-party integrations, and a growing
library of industry-specific templates.

Enterprise-grade standards: While there are several business-area-specific
or consumer-level no-code systems on the market, Unqork is the only no-code
platform designed specifically to build complex, scalable, enterprise-ready
applications, which is why it’s already being used by some of the world’s
leading organizations.

Unqork: The First Enterprise
No-Code Application Platform

 2While Unqork is a SaaS platform, our customers operate in single-tenant environments, which means there is never a mixing
of client data between Unqork customers. Unqork is cloud-agnostic, so customers can avoid cloud vendor lock-in and deploy
applications in the cloud of their choice.

Unqork allows enterprises to shift all their focus to addressing business challenges
instead of technical ones. The platform takes on the “heavy lifting” and frees organizations
to invest their resources building operational efficiencies and perfecting the client
experience. This streamlined approach helps organizations achieve:

•	 Accelerated speed-to-market: No-code automates many high-volume development
tasks so new applications can be built and deployed much faster. In many cases,
applications that would take months or years to reach the market can be built in a
matter of weeks, or even days.

•	 The elimination of legacy code: Code becomes legacy nearly instantly. With no-code,
organizations only need to be concerned with building business logic, even if there is a
technical change, the platform handles all that on the backend.

•	 Ease of updates and maintenance: Large enterprises can spend up to 75% of total IT
budget maintaining existing systems. One of the reasons is the complexity of making
a change in one area requires changes throughout the process. A no-code platform
automates many of these cascading tasks and therefore reduces the complexity of
making changes.

•	 Business agility: Whether it is a pandemic or disruptions of a smaller scale, no-code
can provide organizations with a way to address events quickly.

Curious about how no-code can be applied within your organization? Get in touch to
schedule a demonstration from one of our no-code experts.

Enterprise application
development, reimagined

Unqork is a no-code application platform that helps large enterprises build
complex custom software faster, with higher quality, and lower costs than

conventional approaches.

Request a Demo Learn More

https://forms.unqork.com/demo/
https://www.unqork.com/platform
https://www.unqork.com/platform
https://go.unqork.com/demo.html
https://go.unqork.com/demo.html
https://go.unqork.com/demo.html
https://www.unqork.com/platform
https://www.unqork.com/platform

14 Legacy Code Is the Problem, No-Code Is the Solution

For decades, the standard in software development
has been based on the idea of building faster.
This isn’t a new challenge. In fact, many years ago,
the problem was even worse, as many of the stopgap
solutions we rely on today didn’t even exist yet! Let’s
take a quick look at how building applications has
evolved over the last several decades:
•	 The 1980s were a difficult period for software development.

COBOL was the dominant language, but it was really difficult
to use. Many projects failed to get off the ground or, worse,
were released but malfunctioned. That’s why many refer to
this period as “The Software Crisis.”

•	 Then the 1990s came along and things got a bit better.
COBOL continued to dominate, but methodology innovations
like Rapid Application Development (RAD) and higher-
level (and more user-friendly) programming languages like
Java started to gain traction in the enterprise and building
software got more efficient and easier. Applications became
more useful and the time spent creating them decreased.

•	 Next came the 2000s, which saw Java surpass COBOL as
the dominant language. Innovations like frameworks (e.g.,
Spring) and Integrated Development Environments (IDEs)
along with low-code platforms like Appian, Mendix, and
Outsystems all helped developers become more productive.

•	 Then the 2010s came along, higher-level languages like
Python started to gain adoption, and low-code platforms and
frameworks became more advanced. Methodologies like Agile
started to permeate enterprise development projects. And
despite these advancements, the average time to complete
a typical software project was 10,500 hours, a 20% loss in
productivity.

So, why this recent downtick in productivity? There’s
no doubt software got more complex in the 2010s,
but it got more complex in previous periods as well.
What’s different is that the most recent increases in
complexity have not—yet—been matched with a new
set of development technologies that are sufficiently
able to address these challenges, and as a result,
budgets are exploding, backlogs are growing, and
projects failing to meet requirements and timelines.

A Brief History of Software
Development Productivity

2010s

2000s

1990s

HOURS REQUIRED FOR TYPICAL
ENTERPRISE APPLICATION

1980s

18,019

13,667

8,919

10,500

Source: QSM Software Decelopment
Database, 2019

Appendix

	Button 5:
	Button 6:
	Button 7:

